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SUMMARY
Caustics formed in the field diffracted by defects are explored theoretically as a

possible approach to the inverse scattering problem for ultrasonic non-destructive evaluation.
The case of crack-like defects is considered in detail using the geometrical theory of diffrac-
tion. The involute of the far field caustic reproduces the projection of the crack edge in the
incident beam direction, for a plane incident wavefront. This purely geometrical inversion is
carried out uniquely for the astroid and its involute, the elliptical edge. For a general edge
shape, the complete inversion requires one further length measurement, which may be carried
out in some cases by further experiments with caustics. Useful limitations on the possible
shapes of caustics are explained on the basis of catastrophe theory. Calculations show that the
inherent intensity level change (-2-3 dB) and width (- wavelength) over which it occurs
for a typical ultrasonic caustic are adequate for observation. Some discussion is given of
experimental requirements, as well as of caustics formed in the near field of a crack and
of those formed by voids and inclusions. The topology of the far field caustic cannot in
general distinguish between volumetric and crack-like defects. Studying caustics may prove
to be a useful adjunct to ultrasonic imaging systems for the inspection of fatigue cracks.

POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories,
Box 4331, P.O., Melbourne, Victoria, 3001, Australia.
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16. "ABSTRACT
Caustics formed in the field diffracted by defects are explored theoretically as a

possible approach to the inverse scattering problem for ultrasonic non-destructive evaluation.
The case of crack-like defects is considered in detail using the geometrical theory of diffrac-
tion. The involute of the far field caustic reproduces the projection of the crack edge in the
incident beam direction, for a plane incident wavefront. This purely geometrical inversion is
carriedout uniquely for the astroid and its involute, the elliptical edge. For a general edge
shape, the complete inversion requires one further length measurement, which may be carried
out in some cases by further experiments with caustics. Useful limitations on tht possible
shapes of caustics are explained on the basis of catastrophe theory. Calculations show that the
inherent intensity level change 02-3 dB) and width ( - wavelength) over which it occurs
for a typical ultrasonic caustic ate adequate for observation. Some discussion is given of
experimental requirements, as well as of caustics formed in the near field of a crack and
of those formed by voids and inclusions. The topology of the far field caustic cannot in
general distinguish between volunmetric and crack-like defects. Studying caustics may prove

useful adjunct to ultraso*ic imaging systems for the inspection offatigue cracks.
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1. INTRODUCTION

The quantitative aim of ultrasonics in non-destructive evaluat!on (NDE) is to measure
the shape and size of internal or surface defects in materials. Ultras nic and acousto-optical
imaging methods, pulse transit-time measurements, scattering experimLA.1ts including the basic
pulse-echo technique, and ultrasonic spectroscopy are the principal approaches adopted to
achieve this end.

Recently, attention has been given to the central theoretical problem for ultrasonic scattering,
which is the inversion of scattering data (Majda 1976; Bleistein 1976; Bleistein and Cohen
1977a, b; Whalen and Mucciardi 1978: Rose 1978; Richardson 1978; Achenbach et al. 1978).
The present paper explores the possibility of using caustics, which are the envelopes of rays
diffracted by the defect, for this inversion. Caustics are well known in optics and have been
observed in other fields of scattering, such as molecular collisions (see Connor 1976) and diffuse
scattering of X-rays and neutrons by dislocation loops (Trinkaus 1971).

The theory below is developed for a crack-like defect of almost any shape, which need not
lie in a single plane. The elliptical crack is analyzed in detail, and some comments are made
concerning voids and inclusions. The simple relationship between the caustic patterns and the
diffracting object (defect) is explained on the basis of the geometrical theory of diffraction
(Keller 1957), and general limitations on the shapes of caustics which could assist in their identi-
fication are discussed. Section 3 gives some examples of diffracting object/caustic pairs, and
describes methods for the geometrical inversion of the caustic. Section 4 calculates the inherent
width and intensity level change for caustics, and considers the possibilities for experimental
observation. The discussion outlines the potential value of caustics for fatigue crack imaging,
and the types of caustics expected from scattering by voids and inclusions.

2. THEORY

The case of most practical importance in NDE concerns the scattering of elastic waves in
a solid. It will become clear below that the geometry of caustic surfaces for elastic waves can be
inferred from that of waves in the scaler wave case. For an incident plane wave, we are therefore
concerned with solutions for the scattered wave amplitude u of the reduced wave equation

Ju + k2u = 0 (I)

where k is the wave number. Diffraction by the edge of a two-dimensional crack-like object,
which in general is not planar, will be discussed in this section. The radius of curvature at all
points on the edge is assumed to be large compared with 27r/k.

Asymptotic solutions of equation (I) are given by Keller's geometrical theory of diffraction
(see e.g. Lewis and Beorsma 1969), in which u is assumed to be of the form

u - exp {i k 0(y)} (ik)-r Zm (y), k - o (2)
M-0

Inserting equation (2) into equation (I) gives the eikonal equation for the phase function q(y)
and a recursive set of transport equations for the amplitude function zm(y). In particular, the
first and most important term m = 0 can be writen as

u - A {y/(y + _)U)1,2 exp {i k , (a, s)} (3)

where a is the vector (of magnitude a,) between the field point y and the point x(s) on the edge,
and s measures arc length along that edge (Fig. 1). The parameter y is the distance from a point
x to the other caustic along the ray (the edge itself is one caustic of the astigmatic pencil of
diffracted rays). The phase function is related to the phase Mo(s) of the incident wave at the edge
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by (a, s) o(s) - a. The amplitude factor A is found in Keller's theory by, comparison with
the exact solution for the appropriate canonical problem, which for diffractio'n by a smooth
edge is the half-plane result of Sommerfeld (1954). This comparison technique is central to
much of the success enjoyed by the geometrical theory, though it is not important for the
present paper.

In his original theory, Keller (1957) derived equation (3) by considering directly the conser-
vation of energy along a ray tube. Clearly this approach breaks down at caustics, where a =-Y
and at shadow or reflection boundaries, where A becomes infinite (Ahluwalia, Lewis and Boersma
1968). This failure results because equation (2) is an inappropriate assumption for the asymptotic
form of ui in these regions. In the neighbourhood of a caustic, the field should be written as a
superposition of plane waves

U(Y) =fedge Z(o, s) exp {ikO (a, s)) ds (4)

This integral around the diffracting edge is the starting point for the theory of Kravstov (1964)
and Ludwig (1966), who derive expressions for u which are uniformly valid for a field containing
a caustic.

For large k. the diffraction integral in equation (4) can be evaluated by the stationary phase
method, which states that the dominant contributions to u(y) come from points on the edge
where the derivative 0, = 0. If fl is the angle between the incident ray and the tangent t to
the edge at s (Fig. 1), the field at y is due to rays which satisfy the condition

kt8(, S) =Cos A~S) - a 0ta 0 (5)

This equation defines the well-known cones of diffracted rays of semi-angle g(s) emanating
from points on the edge, whose geometry Keller (1957) predicted simply by extending Fermat's
principle, in the limit of large k, to include diffraction. The envelope of these rays, which forms
the caustic surface for rays diffracted once by the edge, satisfies equation t5) and also the
equation ,, 0, which corresponds to the coalescence of two stationary points along the edge.
This gives, for a ray a to lie on the caustic surface, the equation

b(cos - n sin2  (6

Zs ap + a(6

where a is the principal normal and p is the radius of curvature of the edge at s. There will also
be caustics formed by rays diffracted more than once by the edge, but they will be neglected
in this paper because their intensity is of lower order in k (Keller 1957), and particularly because
they do not occur in the same region as the caustic of the singly diffracted rays.

In the far field, equations (5) and (6) (which describe the caustic surface) reduce to those
defining the caustic surface produced by the projection of the object in the incident beam
direction (Keller 1957). Denoting the parameters of this projection by the superscript i, the far
field caustic is then ddined by

lti=0 (7)

at. n1 =Pi (8)

Equation (8) shows that the far field caustic of singly diffracted rays contains the evolute of
the projection of the edge, that is the locus of the centres of curvature of points on this projection.
Equation (7) shows that the far field caustic surface is a cylinder with generators in the incident
beam direction, so that, in the classical limit k -* oo for which these interpretations hold, all far
field cross-sections are identical. These properties, which have been derived by Keller (1957)
and observed optically by Coulson and Becknell (1922) are central to the present paper: if the
geometry of the far field caustic can be observed in ultrasonics, the shape and in some cases,
the size of the defect projection in the incident beam direction of a crack-like object can be
derived simply by constructing the involute of the caustic. The extent to which this involution
can give a unique result will be discussed in section 3. The position of this classical caustic does
not change with wavelength (though section 4 below shows that its height and width do change),
therefore caustics can be observed with broadband, pulsed ultrasound as well as with continuous
waves.

For the elastic wave case, two families of cones of singly diffracted rays occur, the second
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as a result of mode conversion (Achenbach et al. 1978). These families are related by Snell's
law, and apart from the case of normal incidence on a planar crack, two spatially separated
caustic surfaces result. For example, the diffraction of a P-wave incident at 3p(s) on the edge
yields a P-wave caustic surface whose geometry is equivalent to that described by the scalar wave
theory, together with an S-wave caustic. The geometry of this S-wave caustic is identical with
that predicted in scalar wave theory for rays incident at various points s on the edge at angles
arcos{(r,/vp) cos fp(s)}, where vp and v are the respective wave speeds. When /3p(s) is significantly
different from fr/2, this S-wave caustic causes no complication in far field experiments because
it is well separated from the P-wave caustic. Of course, the two caustics touch for points on the
edge where g(s) = 7r/2. but general properties of the caustic beometry discussed below should
avoid any confusion between them. In addition, S-waves can be reduced or eliminated experi-
mentally by, for example. using as detectors normal probes with low sensitivity to S-waves, or
for pulsed ultrasound, by separation in the time domain. For these reasons, a detailed analysis
of caustics in elastodynamics is not essential for the present work.

Any theoretical limitations that can be placed on the possible shapes of the caustics would
greatly assist their identification. For this purpose, we make use of the application of the cata-
strophe theory* of Thom (1975) to wave phenomena (Berry 1976). This theory is concerned with
the typical local geometry of functions, in the present case those describing the caustic pattern.
In the far field, this pattern depends on two co-ordinates (those of the diffracted field at infinity),
as well as on the shape and size of the diffracting edge. While the global description of this edge
requires two parameters, only one-the projected edge parameter s-is needed for its local
description. The other parameter (say a polar angle) will influence the global topology of the
caustic surface, but will determine only the orientation of local singularities, not their form or
type. In the language of catastrophe theory, the caustic pattern then depends on just one internal
parameter, so the rank is one and only cuspoid catastrophes can occ'!r. Also, the two dimensions
of the far field imply that the co-dimension of the caustic pattern in that region is two, so that
only the fold catastrophe, which appears as ordinary points on the caustic surface, and cusps,
are generically ('typically') possible. Since in addition 'open-ended' folds are not permitted, any
normal section through the far field caustic surface produced by scattering from a purely convex
edge projection typically consists of a continuous closed line interrupted only by cusps.

Non-generic caustics, which may be structurally unstable sections of higher catastrophes,
can occur as a result of symmetry or by accident. However, with few exceptions such as the field
scattered by a spherical void, they are unlikely to be important for the ultimate objective of
ultrasonic NDE of studying real defects in solids. Berry (1976) has given some discussion of
these non-generic cases, which are perhaps more easily pictured for catastrophes of rank two.
Complications arise if the edge projection contains points of inflection, since the caustic then
extends laterally to infinity, and appears discontinuous. These caustics would not be observed
in full, so the discussion of this section excludes edge projections with concave parts; one example
will be considered in section 3.

Cusps correspond to the coalescence of three geometrical ray paths, or three stationary
phase points on the projection of the edge, which occurs when #, 8 , 0. Differentiating
equation (8), this gives

of'ni - xf'nl = p8 1 (9)

Using the Frenet formulae (e.g. Mathews and Walker 1964), xst = ti and n,1  
- tl/pt , the

latter equation resulting because the projection of the edge is planar by definition, so its torsion
is zero. Combining these results with equations (7) and (9), it follows that psi = 0 for cusps
in the far field caustic, i.e. cusps occur when the curvature or radius of curvature of the corres-
ponding point on the projected edge is extremal, as is generally true for the evolutes of plane
curves (e.g. Courant and John 1965). Also, the cusp is normal to the tangent at this corresponding
extremal point. The importance of these properties of cusps for the geometrical inversion of
scattered fields will be discussed in section 3.

In the near field of the object, we must return to equations (5) and (6) for the description
of the caustic surface. Cusp lines satisfy in addition the equation 08 = 0; calculating this from
equation (6), no simple correlation results between cusps and distinctive geometrical features

* A useful introduction to this theory is given by Poston and Stewart (1976).

3

'lop4r
w--- -



of the object, as occurs for the far field. For this reason, the far field appears more useful for
simple inversion. An exception to this is the case of normal incidence on a planar object. for
which the edge is trivially equivalent to its projection and the cross-section of the caustic surface
is the same at any distance from the object. Unfortunately, it appears from the discussion in
section 4 below that the caustic will be more difficult to observe experimentally in the far field
than in the near field. Note that a near field experiment involves an additional dimension in
comparison to the far field, so that the co-dimension in this case is three. Therefore the next
cuspoid catastrophe can occur at those singular points along the cusp lines which satisfy
S... = 0. Clear examples of these so-called 'swallowtail* catastroph, , have been observed in

the optical case (Berry 1976)*; however, experimental limitations discussed in section 4 may
render difficult the observation in ultrasonics of the compressed form of their near singular
sections.

3. RECONSTRUCTION OF THE DIFFRACTING OBJECT

The caustic pattern is always centred in the geometrical shadow of the defect, and often lies
completely within this shadow. Consider firstly a diffracting edge whose project~on is an ellipse
with principal axes of length 2a and 2b. Then the cross-section of the far field caustic will be
the evolute shown in Figure 2, which is an astroid (e.g. Courant and John 1965). Con versely.
when the caustic is observed to be an astroid, it is immediately known that the edge projection
is elliptical. If the distances between the two pairs of opposite cusps are measured as 26o and
271o, it follows from the equation of the astroid (a )2 3 . (b-)2  (a2 - b2)2 3 that the major
axis of the ellipse is 2a = - 2fo-02o/(fo2- 72o2), and b/a = fo/7o. Since the cusps are normal
to the tangents at the corresponding extremal points on the edge, the ellipse is oriented as shown
in Figure 2 with its major axis parallel to the line 2e0 between the closer pair of cusps. Thus it
is actually not necessary to observe the complete caustic in this simple case-only the positions
of cusps in the rectangular array are required.

It is useful to construct the involute of the astroid in another way, based on the knowledge
that the caustic is the locus of centres of curvature of the edge. Imagine a string set along the
inside of the section CIC 2 of the astroid (Fig. 2) and extending beyond C2 in the direction of
the cusp by a distance equal to the minimum radius of curvature of the ellipse, which is known
from the caustic to be b2/a = e03/(0

2- e02). Unwinding this string traces out the first quadrant
of the ellipse. Next, wind the string onto the section CxC 4 of the astroid to produce the second
quadrant of the ellipse. Proceeding clockwise around the astroid and alternately winding and
unwinding in this way, the complete ellipse is generated in an anticlockwise sense. This procedure
also demonstrates that the arc length of the caustic between neighbouring cusps is the difference
in the corresponding extremal radii of curvature.

Some special cases of the ellipse are of interest. For eccentricity c - I, 0 a so that 7o - X,

i.e. one pair of cusps extends laterally to infinity and is not observed. Therefore, tilting the object
about the axis of the closer pair of cusps enables direct measurement of the major axis, since
the two remaining cusps become coincident with the ends of the narrow shadow boundary.
Also, for f - 0, the edge approaches a circle and o -_ 77o -*0. Therefore, for ellipses of low
eccentricity, the tour cusps form an approxim'.,tely square array which will be too smal! to resolve.
Ultimately, for the circle e -0 and the cross-section of the caustic pattern degenerates to a
single point, which is well known in optics to have an intensity equal to that of the incident field
(e.g. Born and Wolf 1959). Observation of such a degenerate caustic immediately gives the
projection of the diffracting edge as being circular. This particular case is not described in the
classification given by Thom's theorem because of its high symmetry. The size of a nearly circular
defect may be found by tilting the specimen, giving an elliptical projection whose caustic is an
astroid of convenient dimensions.

Some other examples of caustic/diffracting edge pairs can be generated from the elliptical
case. If one side of a distorted ellipse is flatter than the other, a caustic will result which has
two pairs of cusps arrayed at right angles, but not symmetrically (Fig. 3a). Again, if an ellipse
is distorted by shifting one turning point from the symmetrical position, the cusps will no longer

* The author is indebted to Dr. M. V. Berry for private communication on this point, and

for reading the manuscript.
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be directed as two opposing pairs at right angles (Fig. 3b). Nevertheless, the directions of the
tangents at the turning points are immediately known by inspection of the caustic.

If the edge projection contains a concave part, the caustic will appear discontinuous, since
it extends to infinity at points of inflection. Figure 4 shows an ellipse 'pressed in' at one end,
and the corresponding caustic. Note that the intensity of the caustic tends to zero far out along
those sections which are asymptotic to the normal at the points of inflection, because the density
of contributing ray paths then approaches zero. Therefore, only a limited part of the caustic
will actually be observed. A less severe depression in the end of the ellipse will produce the cusp
marked D further away from the rest of the caustic. A 'flattened end' on an ellipse w~hich is
nevertheless convex will give a caustic section as a closed line containing six cusps-. Three of
these cusps coalesce into one as the distortion of the ellipse is reduced to zero, again producing
the simple 4-cusped astroid.

Involuting the far field caustic gives the projection of the diffracting edge in the incident
beam direction. The orientation of a planar defect in three dimensions could be inferred from
several such measurements involving different projections. Another approach is to examine
the variation of the caustic pattern as the plane of observation is moved into the near field:
the special case of normal incidence produces no change of the caustic in this region. Identifying
this behaviour defines the normal to a planar defect. The extent to which the three dimensional
structure of non-coplanar diffracting edges can be found is not considered here, both because
of its greater complexity and because most practical applications of defect sizing in ultrasonics
do not require this detail.

Any smooth, purely convex closed shape has an even number of turning points, since maxima
and minima of curvature must alternate in circuit. Therefore, there is an even number of cusps
in the caustic which is itself a partial check on an experiment. The diffracting edge projection is
normal to the cusps at the points of extremal curvature, so the orientation of the projection is
known by inspection of the cusps. Edge projections corresponding to caustics of four, six, eight
or higher even number of cusps can be constructed by alternately folding and unfolding each
caustic section in turn, just as was done for the ellipse. For this general case, there is no repre-
sentation of the caustic in terms of elementary functions as there was for the astroid. Therefore,
the radius of curvature at one extremal point cannot be deduced simply from the spacing of cusps,
and a different method must be sought to achieve a unique reconstruction.

Since the cusps corresponding to the minima of p(s) are less sharp than those corresponding
to maxima (e.g. see the ellipse of Fig. 2), it should be possible to identify at least one cusp
corresponding to a minimum of p(s), say pl. Beginning with this cusp, and assuming particular
values for pl, a one-parameter family of possible involutes of the caustic can be generated.
It then remains to choose the correct involute from this set. One technique suitable for some
cases of planar defects would be to tilt the object about an axis between two approximately
opposite cusps, whose spacing would then be asymptotic to the length of the narrow shadow
boundary. This procedure enables direct measurement of one length in the diffracting edge,
which is sufficient to select the correct involute. If one length in the edge can be determined by a
different technique, as is possible for some objects using ultrasonic spectroscopy (e.g. Bifulco and
Sachse 1975, Adler et al. 1977), the desired involute can again be chosen from the set of possibilities.

Trinkaus and Drepper (1977) show for the more general case of a two dimensional phase
object how to derive the curvatures of extremal points from the positions and intensities of
the peaks in the diffracted field which 'clothes' the caustic in the neighbourhood of the cusps.
However, it can be shown that the transitional approximation which they use to calculate the
relevant diffraction integral is not accurate sufficiently far from the position of the classical
caustic for typical ultrasonic values of k, which are of course much smaller than those for optics.
Therefore, adapting their method to ultrasonics would require the more accurate uniform
approximation for the diffraction integral (e.g. Felsen and Marcuvitz 1973); the resulting pro-
cedure would be too complicated to be attractive for ultrasonic NDE. In any case, the spacing
of the 'Airy fringes' in ultrasonics is near the resolution limit of imaging systems, as discussed
in section 4 below. The work of Trinkaus and Drepper nevertheless does suggest that a unique
inversion is possible for more general edge shapes.

Further work pursuing the selection of a unique inversion may be profitable, for instance
by developing formulae for special geometries as was done for the astroid and its involute.
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At present, however, it is important to ask how difficult it will be to locate caustics in ultrasonics.
This question is addressed in the following section.

4. CALCULATED CONTRAST AT THE CAUSTIC AND ITS POSSIBLE OBSERVATION

The ease of observation of caustics in ultrasonics will depend on their width as well as their
intensity relative to the background in their neighbourhood. These properties will be studied
by considering a particular but typical case, specifically normal incidence of a plane wavefront
on a planar elliptical crack, described parametrically by x = a cos 0. Y -- b sin 0. Calculations
will be made for a point on the caustic which lies within the geometrical shadow of the ellipse:
the contrast will be low for any part of the caustic which lies outside this shadow in the bright
field of the incident wave.

Referring again to Figure 2, we see that the coalescence of two stationary phase points at
0 - ir,4, for example, contributes to the caustic surface along a line which projects into the
astroid segment C1C2 at point P. In addition, these rays from 0 = r4 contribute as from an
isolated stationary point to caustic segments in the first and third quadrants, respectively before
and after passing through the caustic. Equivalently, there are two 'isolated' contributions from
the fourth and second quadrants to the field at all points along the caustic line through P. The
question then reduces to a comparison between the intensity on the 'bright side' of the caustic
(the inside of the astroid), to which four rays contribute including two which coalesce, and the
intensity on the 'dark side' to which two rays contribute.

For the planar crack specified, the function z(a, s) in the diffraction integral (equation 4) is
proportional to ol. If the constant of proportionality, which depends on the amplitude of the
incident wave, is set equal to unity, the intensity U12 scattered to a point y in the far field from
an isolated stationary point sj is (adapting e.g. Skudrzyk 1971)

U/2 (y) =2 {ka2 ss(s,))- 1  (10)

For two stationary points coalescing at se, 0S*0 and equation (10) should be replaced by
the transitional approximation

4rr2 f 2 .) 23

UC
2(y) = 4r2 2 3 Ai2(11)

92 (k088 (S,) I

where the argument of the Airy integral is given near the caustic (Ludwig 1966) by

8 = {2k2/,} 1 3 d (12)

In equation (12), c is the radius of curvature of the caustic and d is the perpendicular distance
from the field point y to the caustic. Recalling that 0(s) = #0(s) + a, and making use of the
ray condition (equation 5) for P(s) = 7r/2, the remaining functions in equations (10) and (I1)
are found to be

,,(s)= {I - 'n/}/ (13)

OSAO(s) ps/(Ap) (14)

For the far field, a can now be replaced by the distance zo between the diffracting object and
the plane of observation of the caustic section.

The intensity on the dark side of the caustic is found by summing incoherently the contri-
butions from the appropriate isolated edge points, st and S2. This procedure ignores any inter-
ference between these two rays; any resulting intensity variation would in any case be smoothed
by an experiment using a broadband transducer. On the bright side of the caustic, the maximum
intensity is the sum of these two rays plus the maximum value of the caustic field, which occurs
at 8 = ' "02. The parameters p and p, for the edge, a for the caustic and a .n for the edge points
st and s2 are found in Appendix I for the elliptical crack for 0 t V/4 and its corresponding
caustic along the line through P. Table I lists the maximum contrast

U
2

C az + (Ut
2 + U2

2
)

Cuax = (Ut 2 + U22)

at the caustic section 100 mm behind the plane of the ellipse (a, b) = (10, 7'5) mm for 10 MHz
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in water and typical P and S wavelengths in steel. The calculated changes in intenS~tt level of
the order of 3.5-5 dB can easily be observed experimentally. In addition. Table I gi'es estimates
of the contrast Cat, predicted if Ai2 (-8) is averaged over its first two fringes: the changes of
intensity level of about 2-3 dB are also observable.

Examination of equations (10)-(14) shows that the intensity contributed b isolated edge
points decreases as a I for large a, which is expected since each point on the edge scattcrs as
an infinitesimal section of an infinite half-plane, which gives a cylindrical wave. The caustic
intensity decreases more rapidly, as a 4 3. The contrast at the far field caustic therefore decreases
weakly as ,a 1 3 so the choice for a (that is, :o) is not critical from this theoretical viewpoint.
Practical limitations of transducers are more important for choosing -o. as discussed below.
Equations (10) and (IH) also show that the values for C increase only as k 3, so a reasonable
estimate of C in an experiment is found by taking k to correspond to the centre frequency of
the transducer. it is not necessary to integrate over the spectrum, though this could readily
be done.

An estimate of the width of the caustic is the distance dw from the maximum intensit.
on the bright side to the position on the dark side where U(.2 has dropped to 10",, of its maximum

value. Equations ( I I ) and (12) then give

dw = I8{ x;'2k 2 1 
3 (15)

The values of dwv in Table I are of the order of the corresponding wavelength ,\, or slightl\
greater. Since A is also a rough estimate of the resolution that can be achieved in any scanning
or imaging system which may be used to measure the field, it is clear that the inherent width
of the contrast due to caustics should not prevent their observation. This conclusion becomes
less valid as a increases, such as for the part of the caustic corresponding to edge points near
the minor axis of a highly eccentric ellipse. Therefore for the technique proposed in section 3
which relies on tilting a plane crack about an axis between two cusps, the remainder of the caustic
will not only become more widespread and of lower intensity, but also more diffuse. However,
since values of ot for points near the two cusps become smaller on rotation, the required part
of the caustic actually becomes sharper.

The spacing of the Airy fringes in ultrasonics, given at least roughly by equations similar
to equation (15), are of the order of the wavelength, so these fringes will not readily be observed.
This is part of the reason why caustics have been ignored in ultrasonics, whereas in the optical
case a > A so the fringe spacings are also much greater than A, allowing easy observation.

Thus far, this paper has assumed a plane incident wavefront. If this wavefront is curved, as
for example from a point source, the interpretation of the caustic is more complicated because
its geometry depends on the curvature of the incident wave as well as on that of the edge. Never-
theless, the caustic is just as sharp and easily detected. The most important factor experimentally
is to tailor the incident wave to minimize the angular spread of wavelets incident on a single
point on the edge, since this spread smears out the caustic. This smearing is likely to remove
any remnants of the Airy fringes, so the values for C,,, in Table I give a more realistic estimate
of the expected caustic contrast than those for Cmaz.

One approach to forming the incident field would be to use a focused ultrasonic probe,
with its minimum spot set at the back focal plane of an acoustical lens to produce the convenient
(though not essential) plane wavefront. Alternatively, the minimum spot could be produced
by a normal probe together with another acoustical lens, which in practice can reduce the width
of the generated sound to the order of A (Knollman et al. 1978). Other approaches may be to
exploit either the direct production of a plane wavefront from a piezoelectric plate (Lakestani
et al. 1976), or the low divergence of beams of Gaussian cross-section (Martin and Breazeale
1971). Ultrasonic point sources of diameter 101Am or less have been generated using lasers
(Mallozzi et al. 1977), and, at the expense of complexity, these sources appear most promising
for observing ultrasonic caustics. Simple geometry shows that the lateral smearing of the caustic
increases with zo, so an initial demonstration of ultrasonic caustics would most easily be carried
out in the near field; in any case, the geometry of the near field caustic is identical with that of
the far field for normal incidence on planar objects (section 2 above). For the actual observation
of the diffracted field, any scanning or imaging system with sufficient resolution could be used.
One possibility is a Schlieren system (e.g. Baborovsky et al. 1973); another is Bragg diffraction
imaging (Korpel 1968) adapted by a suitable choice of optical lenses to image in the region behind

7
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the object. The direct observation of a sound field b) its nucleation of photographic film develop-
ment in a tank of developer (Dehn 1960) may also warrant consideration.

A reasonable estimate of the width of the intensity level jump at the caustic is given by
equation 15) with k corresponding to the centre frequency of the transducer. Frequency analysis
is of course possible, but it is not necessary in order to observe caustics. Since dw decreases
as k 2 3 higher frequencies (say 10-20 MHz for ultrasonic NDE) produce sharper caustics.
Therefore those produced at frequencies (up to - 2 GHz) typical of acoustical microscopes are
narrow, though it must be remembered that the object under examination is small as well, Also.
most microscope systems are not designed to scan the diffracted field behind the object, though
that based on Bragg diffraction imaging may be suitable for modification (see Korpel (1974)
for a review of ultrasonic microscopy). For larger objects with correspondingly larger values of
3 , equation (15) shows that the caustic is only slightly more smeared out. since ti, x

5. DISCUSSION

The caustic pattern is found in and near the geometrical shadow, and its dimensions are
typically comparable to those of the defect. Therefore the study of these patterns is not seen as
a means of improving the resolution of imaging systems. The advantage may come in dealing
with defects which, though sufficiently large, produce images that cannot be easily interpreted.
For example, an image of a fatigue crack can be complicated by specular reflection from facets
on the crack faces and by penetration through regions of crack closure.

To speculate further on fatigue crack imaging, first note that even for a high NDE ultrasonic
intensity of 100 kWm 2, the actual displacement amplitude is only about 10 A for 10 MHz
P waves in steel. Recent fracture studies by Bowles (1978) on AI alloys show that the crack tip
is generally elliptical and open by several lim. Therefore for these cases the edge of the crack
is opaque to ultrasound*, so the caustic can be formed by the edge. For an unloaded crack,
typically less than 20", of the faces are actually closed; therefore 'false' edges inside the crack
are much smaller, so their caustics will also be much smaller and either unresolved or else easily
distinguished from the caustic from the 'true' edge.

In the near field of the rays transmitted by a solid or liquid filled inclusion, caustic sections
described as elliptic or hyperbolic umbilics are expected, though likely to be masked by diffraction
effects and experimental smearing. These catastrophes of rank two are possible because two
parameters are needed for the local description of the defect, compared with one parameter (Is)
for the crack. In the far field, the co-dimension is two and again only elementary folds and cusps
are generically possible. Therefore the topology of far field caustics cannot distinguish between
inclusions and planar defects. This result does not hold if the orientation of the specimen is
regarded as an additional accessible control parameter in the sense discussed by Berry (1976):
then, singular umbilic sections can in principle be generated in the far field by rotating the
specimen. Nye (1978) has carried out a detailed study of caustics of rank two for an analogous
case of light passing through water droplet lenses.

For voids, umbilic sections are possible in the near field, because the local description of
the source of bulk waves produced by decay of the creeping waves requires two parameters (such
as s plus arc length along the geodesic). However, just as for the scattering by inclusions, these
umbilics are not likely to be readily observable. The far field again consists only of elementary
folds and cusps. An important singular case is the spherical void, which gives a point caustic
at the centre of its shadow for all orientations. This case is not described by Thom's theorem
because. of its high symrmetry.

The principal conclusions of this paper are:
(1) The cross-section of the ultrasonic caustic surface formed in the far field diffracted by

cracks consists of a closed line interrupted only by cusps.
(2) The involute of the far field caustic section reproduces the crack edge.
(3) The geometrical inversion of the caustic can be carried out uniquely for the case of the

astroid and its involute, the ellipse. For a general edge shape, the inversion gives the shape
and orientation of the crack projection in the incident beam direction. A unique solution
then requires one length measurement, which may be carried out in some cases by further
experiments with caustics or by other means.

8



(4) The calculated inherent intensity level change (2-3 d B) and width ( -A) over which
it occurs for a typical ultrasonic caustic are adequate for observation.

(5) Experimental observation will require careful tailoring of the incident wa~e. Caustics
may be more easily observed in the near field, though the far field is needed for simple
geometrical inversion for other than normal incidence on planar defects.

(6) The study of caustics could prove to be a useful adjunct to ultrasonic scanning and
imaging systems for the inspection of fatigue cracks.

(7) The topological form of far field caustics cannot in general distinguish between volumetric
and planar defects. The theoretical possibility for this distinction using the near field
caustic may not be experimentally viable.

*This is presumably the reason why sizing of tight fatigue cracks based on the timing of
bulk wave pulses diffracted from the edge is successful, whereas the use of surface waves, which
must travel over the entire crack face, breaks down (Lidington et al., 1976).
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APPENDIX I

Parameters for the Case of the Elfipse

For the ellipse x = a cos 8, Y = b sin 0. the radius of curvature is

p = (a2 sin 2 0 b 2 cos2 )32  (A1. 1)
ab

Using ,si/O (a sin 2 0 T- b2 cos 2 8)1 2, it follows that

3(a2 - b2) sin 20 (A2)
2ab

The astroid is the locus of centres of curvature of the ellipse, and is given parametrically b

(a2 - b2) cos 3  
- (a2 - b2) sin 3 0A3

a = b

The point P corresponding to rays coalescing at 0 7r/4 is

ff, (a2_- b2) (a2 -_b2)
(tv. /) I 2V"2a ' 2v'2b "

We now require the other two normals to the ellipse which pass through P. These rays occur

when 0 satisfies

- (fp - a cos 0) asin 0 + (71p - b sin 0) bcos 0 = 0 (AI.4)

Equation (A 1.4) simplifies to

sin 0 + cos 0 2/2 sin 0 cos 0 (AI.5)

Equation (AI.5) can be solved by squaring both sides, then selecting the appropriate solutions
for 0. The result is that the isolated stationary point contributions originate in this case at s,
and S2 corresponding to 0 = I 17/12 and 197r/12, respectively. The function ain appearing in
equation (13) is simply the length of the lines from s, and S2 to P. For the ellipse (10, 7.5) mm,
these lengths are 11 90 and 5.29 mm.

From equation (AI.3), the radius of curvature of the astroid is found to be
(sin2 0 cos280 32

3ab (a2 - b2) sin cos - + - - (AI.6)
1 a2  b2 J

which is -8"08 mm at the point P for the case considered.
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TABLE I

Intensity changes across the caustic at point P expressed as a ratio and
in dB, and caustic width, listed at 10 MHz for the section 100 mm
behind an elliptical crack having semi-major axes (a, b) = (10,7 5) mm.

Water Steel (S) Steel (P)

A (mm) 0.15 0-30 0-60
Cmax 3"12 2"68 2"32
(dB) (4-94) (4-28) (3-65)

Car 2-02 1-79 1.64
(dB) (3-04) (2-56) (2-14)

dw (mm) 0.24 0-37 0"60

Figure /-The cone of rays diffracted from the incident ray at the point x(s) on the edge, and the
geometrical definition of parameters used.

Figure 2-An elliptical diffracting edge and the corresponding far field caustic. This and figures
3 and 4 are superpositions of the spaces of the edge projection and of the far field diffraction
pattern drawn on the same scale. The two cusps lying along the major axis are always inside the
geometrical shadow; the other two cusps are outside the shadow for ellipses having eccentricity
> 1/ /2. The dashed lines indicate all rays contributing to the field at point P, as discussed in

section 4.

Figure 3-Distorted ellipses with their corresponding caustics.
(a) One side of the ellipse more eccentric than the other.
(b) One minimum of curvature shifted from the symmetrical position.

Figure 4-An ellipse "pressed in" at one end, and its corresponding caustic. The association
between cusps and turning points is indicated by letters. The pattern in the region marked X is a
superposition of elementary fold catastrophes, and should not be mistaken for a section of some
higher catastrophe.
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